4-Inch Master Meter Octave Ultrasonic Meter Accuracy Testing

Prepared for

Master Meter

May 2011

UTAH WATER RESEARCH LABORATORY

Utah State University Logan, Utah Report No. 2413

4-Inch Master Meter Octave Ultrasonic Meter Accuracy Testing

Submitted to:

Master Meter 101 Regency Parkway Mansfield, TX 76063

By:

Michael C. Johnson PhD, PE

Utah Water Research Laboratory 8200 Old Main Hill Logan, UT 84322-8200

May 2011

Hydraulics Report No. 2413

INTRODUCTION

Utah State University was contracted by Master Meter to perform flow calibrations at the Utah Water Research Laboratory (UWRL) in Logan, Utah on a 4-inch Master Meter Octave Ultrasonic flow meter. The testing required that the meter be tested over a wide range of flows and that each flow be repeated for a determination of meter repeatability. Personnel from Master Meter indicated the range of flows to be tested and witnessed the testing. This test report summarizes the results of the testing.

TEST SETUP

The 4-inch meter was installed in a straight section of 4-inch pipe and had approximately 50 diameters of straight pipe upstream from the meter and approximately 20 diameters of straight pipe downstream from the meter. In addition, a field service connection was simulated ten inches downstream from the meter to evaluate if its proximity had any effect on the meter's performance. Valves were used to regulate and control the flow. Figures 1 and 2 show the test installation.

Figure 1. Meter installation.

Figure 2. Meter installation.

ACCURACY TESTING

Table 1 shows the conditions under which the meter was tested.

Meter Size	Nominal Flow Rates Tested (gpm) and Draft Volume (gal.)									
4-inch	0.0625	0.75	5	20	250	500	1000			
Draft (gal.)	Varies	10	50	500	1200	2000	2800			

Table 1. Flow conditions tested.

The meters were tested using a gravimetric bench that was certified using NIST traceable weights. The weight of water of each draft and the water temperature were measured for each run.

RESULTS

Table 2 shows the results of the testing and Figure 3 shows the results graphically. Notable are the facts that the 4-inch meter was capable of registering flow less than 0.1 gpm with the low flow cutoff disabled and that the meter performance was not affected by directing flow through a 2-inch field simulated connection that was 2.5 diameters downstream.

Utah Water Research Laboratory

Flow Meter Calibration Data

Meter Manufacturer Master Meter Calibration Date 5/3/11 Meter Calibration Location 6" Line End User Installation LAB S/N 104500184 Model 4" Octave Tag <u>Pipe Setup</u> Upstream 4" std. steel Downstream 4" std. steel

Certified by: Michael Johnson

Calibration Performed by: M. Johnson, Z. Sharp Witnessed by: P. Turner, T. Kearl S.S. Prepared By: Mike Johnson 5/11 S.S. Checked By: Steven L. Barfuss, Blake Tullis

		Master Meter		Weight Tank		Flow			Indicated Volume				Temp. / Unit Wt.		
Run	Flow	Range	Trans.	Initial Weight	Final Weight	Time	Target	Flow	Volume	Initial Vol.	Final Vol.	Volume	Registry	Temp.	Unit. Wt.
No.	Key	in H2O	mA/Hz	lbs	lbs	sec	gpm	gpm	gallons	gallons	gallons	gallons	(%)	F	lb/gal
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	1M		92.70	68.8	154.2		0.75	0.70	10.24	8092.04	8101.97	9.93	97.02%	48.3	8.344
2	1M		88.11	154.2	241.4		0.75	0.66	10.45	8101.97	8112.13	10.16	97.21%	49.3	8.343
3	1M		666.00	94.0	518.8		5	5.00	50.91	34441.51	34492.28	50.77	99.72%	46.4	8.344
4	1M		664.20	94.4	533.2		5	4.98	52.59	34492.28	34544.72	52.44	99.71%	47.7	8.344
5	1M		2698.00	50.0	4290		20	20.24	508.13	8415.87	8921.97	506.10	99.60%	45.9	8.344
6	1M		2689.00	4290.0	8555		20	20.17	511.12	8921.97	9430.31	508.34	99.46%	45.4	8.344
7	6M		1002.80	445.0	10750		250	250.70	1234.93	10215.02	11453.62	1238.60	100.30%	44.6	8.345
8	6M		1000.50	10750	21335		250	250.13	1268.49	11453.62	12724.80	1271.18	100.21%	44.6	8.345
9	6M		1973.60	70.0	17230		500	493.40	2056.43	13432.57	15498.29	2065.72	100.45%	44.7	8.345
10	6M		1966.60	60.0	17270		500	491.65	2062.42	15498.29	17568.91	2070.62	100.40%	44.7	8.345
11	6M		3953.00	75.0	24015		1000	988.25	2868.95	27261.48	30146.95	2885.47	100.58%	44.9	8.345
12	6M		4000.00	90.0	23670		1000	1000.00	2825.82	30146.95	32985.54	2838.59	100.45%	45	8.344
13	6M		0.00	68.8	123.4		1/16	0.08	6.54	9432.22	9438.01	5.79	88.47%	50.7	8.343
14	6M		1016.40	1035.0	9880		250	254.10	1059.98	33360.41	34423.38	1062.97	100.28%	45.1	8.344

